Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Res Sq ; 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-2319529

ABSTRACT

Objective Assess the presence, durability, and neutralization capacity of SARS-CoV-2-specific antibodies in breastfeeding infants' stools, mother's plasma, and human milk following maternal vaccination. Design Thirty-seven mothers and 25 infants were enrolled between December 2020 and November 2021 for this prospective observational study. Human milk, maternal plasma, and infants' stools were collected pre-vaccination and at periods up to 6 months following COVID-19 vaccine series initiation/completion. SARS-CoV-2 antibody levels and their neutralization capacities were assessed in collected samples. Results SARS-CoV-2-specific IgA and IgG levels were higher in infant stool post-maternal vaccination amongst milk-fed compared to pre-COVID controls. Human milk and plasma SARS-CoV-2-specific IgA and IgG concentrations decreased over 6 months post-vaccination but remained higher than pre-vaccination levels. We observed improved neutralization capacity in milk antibodies over time. Conclusions The presence of neutralizing SARS-CoV-2-specific antibodies in infant stool following maternal vaccination offers further evidence of the lasting transfer of these antibodies through breastfeeding and their protective effect.

3.
Cell Host Microbe ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2240051

ABSTRACT

Humanity has faced three recent outbreaks of novel betacoronaviruses, emphasizing the need to develop approaches that broadly target coronaviruses. Here, we identify 55 monoclonal antibodies from COVID-19 convalescent donors that bind diverse betacoronavirus spike proteins. Most antibodies targeted an S2 epitope that included the K814 residue and were non-neutralizing. However, 11 antibodies targeting the stem helix neutralized betacoronaviruses from different lineages. Eight antibodies in this group, including the six broadest and most potent neutralizers, were encoded by IGHV1-46 and IGKV3-20. Crystal structures of three antibodies of this class at 1.5-1.75-Å resolution revealed a conserved mode of binding. COV89-22 neutralized SARS-CoV-2 variants of concern including Omicron BA.4/5 and limited disease in Syrian hamsters. Collectively, these findings identify a class of IGHV1-46/IGKV3-20 antibodies that broadly neutralize betacoronaviruses by targeting the stem helix but indicate these antibodies constitute a small fraction of the broadly reactive antibody response to betacoronaviruses after SARS-CoV-2 infection.

4.
J Perinatol ; 43(6): 775-781, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2185724

ABSTRACT

OBJECTIVE: Assess presence, durability, and neutralization capacity of SARS-CoV-2-specific antibodies in breastfeeding infants' stool, mother's plasma and milk following maternal vaccination. DESIGN: Thirty-seven mothers and 25 infants were enrolled between December 2020 and November 2021 for this prospective observational study. All mothers were vaccinated during lactation except three, which were vaccinated during pregnancy. Milk, maternal plasma, and infants' stool was collected pre-vaccination and at periods up to 6 months following COVID-19 vaccine series initiation/completion. SARS-CoV-2 antibody levels and their neutralization capacities were assessed. RESULTS: SARS-CoV-2-specific IgA and IgG levels were higher in infant stool post-maternal vaccination amongst milk-fed compared to controls. Maternal SARS-CoV-2-specific IgA and IgG concentrations decreased over 6 months post-vaccination but remained higher than pre-vaccination levels. We observed improved neutralization capacity in milk and plasma after COVID-19 vaccination. CONCLUSIONS: The presence of SARS-CoV-2-specific antibodies in infant stool following maternal vaccination offers further evidence of the lasting transfer of these antibodies through breastfeeding.


Subject(s)
COVID-19 , Milk, Human , Female , Pregnancy , Infant , Humans , Breast Feeding , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Mothers , Vaccination , Immunoglobulin A , Immunoglobulin G
5.
iScience ; 25(12): 105507, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2095533

ABSTRACT

Here we interrogate the factors responsible for SARS-CoV-2 breakthrough infections in a K18-hACE2 transgenic mouse model. We show that Delta and the closely related Kappa variant cause viral pneumonia and severe lung lesions in K18-hACE2 mice. Human COVID-19 mRNA post-vaccination sera after the 2nd dose are significantly less efficient in neutralizing Delta/Kappa than early 614G virus in vitro and in vivo. By 5 months post-vaccination, ≥50% of donors lack detectable neutralizing antibodies against Delta and Kappa and all mice receiving 5-month post-vaccination sera die after the lethal challenges. Although a 3rd vaccine dose can boost antibody neutralization against Delta in vitro and in vivo, the mean log neutralization titers against the latest Omicron subvariants are 1/3-1/2 of those against the original 614D virus. Our results suggest that enhanced virulence, greater immune evasion, and waning of vaccine-elicited protection account for SARS-CoV-2 variants caused breakthrough infections.

6.
Commun Biol ; 5(1): 810, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1991681

ABSTRACT

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.


Subject(s)
COVID-19 Drug Treatment , Influenza A virus , Influenza, Human , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chemokines , Epithelium , Humans , Influenza A virus/physiology , Influenza, Human/drug therapy , Lung , SARS-CoV-2 , Virus Replication
7.
Sci Adv ; 8(31): eabp9770, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1973775

ABSTRACT

SARS-CoV-2 nucleocapsid protein (N) induces strong antibody (Ab) and T cell responses. Although considered to be localized in the cytosol, we readily detect N on the surface of live cells. N released by SARS-CoV-2-infected cells or N-expressing transfected cells binds to neighboring cells by electrostatic high-affinity binding to heparan sulfate and heparin, but not other sulfated glycosaminoglycans. N binds with high affinity to 11 human chemokines, including CXCL12ß, whose chemotaxis of leukocytes is inhibited by N from SARS-CoV-2, SARS-CoV-1, and MERS-CoV. Anti-N Abs bound to the surface of N-expressing cells activate Fc receptor-expressing cells. Our findings indicate that cell surface N manipulates innate immunity by sequestering chemokines and can be targeted by Fc-expressing innate immune cells. This, in combination with its conserved antigenicity among human CoVs, advances its candidacy for vaccines that induce cross-reactive B and T cell immunity to SARS-CoV-2 variants and other human CoVs, including novel zoonotic strains.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Adaptive Immunity , Humans , SARS-CoV-2
8.
Science ; 377(6607): 728-735, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1968212

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Peptides/immunology , Protein Conformation, alpha-Helical , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
9.
J Infect Dis ; 224(12): 2001-2009, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1575924

ABSTRACT

BACKGROUND: False positivity may hinder the utility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serological tests in sub-Saharan Africa. METHODS: From 312 Malian samples collected before 2020, we measured antibodies to the commonly tested SARS-CoV-2 antigens and 4 other betacoronaviruses by enzyme-linked immunosorbent assay (ELISA). In a subset of samples, we assessed antibodies to a panel of Plasmodium falciparum antigens by suspension bead array and functional antiviral activity by SARS-CoV-2 pseudovirus neutralization assay. We then evaluated the performance of an ELISA using SARS-CoV-2 spike protein and receptor-binding domain developed in the United States using Malian positive and negative control samples. To optimize test performance, we compared single- and 2-antigen approaches using existing assay cutoffs and population-specific cutoffs. RESULTS: Background reactivity to SARS-CoV-2 antigens was common in prepandemic Malian samples. The SARS-CoV-2 reactivity varied between communities, increased with age, and correlated negligibly/weakly with other betacoronavirus and P falciparum antibodies. No prepandemic samples demonstrated functional activity. Regardless of the cutoffs applied, test specificity improved using a 2-antigen approach. Test performance was optimal using a 2-antigen assay with population-specific cutoffs (sensitivity, 73.9% [95% confidence interval {CI}, 51.6-89.8]; specificity, 99.4% [95% CI, 97.7-99.9]). CONCLUSIONS: We have addressed the problem of SARS-CoV-2 seroassay performance in Africa by using a 2-antigen assay with cutoffs defined by performance in the target population.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/blood , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Mali/epidemiology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL